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I. Introduction. During the contract period substantial progress was made

on three basic problem areas:

(1) The partial basis problem.

(2) Least squares approximation with restricted range.

(3) Mixed norm approximation.

In sections IT, III, IV, we will discuss some of our work in each of

these areas. In section V some other results are discussed.

II. The Partial Basis Problem. This problem was formulated by us in 1975

as a generalization of a problem of placing antenna elements optimally

in a line array; independently, G. G. Lorentz studied a special case [11].

The problem has received considerable attention from researchers in recent

ye rs and elegant results have been obtained by us and others. This

should prove to be a fruitful area for further investigation.

The partial basis problem can be stated in its general form as

follows. Let X be a normed linear space, let f, ho "e,h -1 belong

to X and let n be an integer, 1 < n < N . For every sequence

) = {P}n of integers, with 0 < 1I <• . n <n N-1 , consider

n

e(1)= m II f= h k h .
C1 , *,c Ok=l Uk

The problem is to minimize e(tI); it is of particular interest when X

is one of the standard function spaces. The main results of [71 gives

sufficient conditions for the "tail" h4 n ,.* ,hN 41, to be the unique

best partial basis of size n . 7ypical theorems are:
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Theorem 1. Let 0 < a < b < and let N,n be integers with 1 < n < N.

Let f be a real function, continuous in [a,b] and assume that, for

k = 0, l,*o,n, (x k-Nf)(k) exists and is > 0 in (a,b), with strict

inequality there for k = n - i and k = n . Let 0 < p <*< n <N-I

be integers such that {V I*,... run {N-n,..o,N-} Let 1 < p :S

Then
4N-i Co

min I f(x) C X ~X < 14-. G.--
ckreal k=N-n L (ab v v .€u VP .- , -o

min ii f(x) - I x * -s
ckreal k=l LP(a,b)

Theorem 2. Let 0 _N-1 <a <** < aO < and let 1 < n < N, n

an integer. Let f be a real function with f (2k+l ) = 0,

k = 0,*.,N-l, and fl2k) (x) > 0 on (0,70 for k - 0,1,..,N
Assume f (2'xl) is continuous from the right at 0 . Let

0 < << < N-I be integers such that {Ul,°,In }  {N-n,...,N-1).

Let 1 < p < . Then

N-1
mi II f(x) - c cos NX <
ckreal k=N-n LP (0, 7)

n

mi Infcx) - I c cosa X II
ckreal k=l Ik L (0, f)

The theory of Tchebycheff systems is important for partial basis results

and 171 contains contributions to this theory. A typical theorem:

Ii
S- .- . . ..i-,-.
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Theorem 3. Let 0 < a0 < < n . Then

cos a x , sin a0x , - Cos a x, - sin aix,..., (-1)n cos a X,(-1) sin anx

is an extended complete Tchebycheff system on (0, W3 if and only if

a < 1/2.
n

Elegant results have been obtained by Lewis, Pinkus, and Shisha [91

giving sufficient conditions for the "head" h 0,**,hn-1 to be the unique

best partial basis of size n . Perhaps the most striking result is this:

Theorem 4. Let 0 < a < b < w , 1 < n < N , f continuous and positive

k (k)
on [a, b] , (-I) f (x) > 0 for a < x < b , k = 1,° °* , n and

1< p < . Then for sl,..., n+l any subsequence of length s of
N-I

f,l,x,..., x is a Tchebycheff system on (a, b] and

mi IIf(x) - n-1 1 kI X < min Ilf(x)- C"k
ck real k=O L (a, b) c kreal k=l L (a, b)

whenever 0 < U < N-1 and {v1 ,"',°,n} {O, i,ee °,-n-l1

The classical completely monotonic functions satisfy the hypotheses
n-i

of Theorem 4 and hence are best approximated by lx,*,x . Examples

*-cx -M
are f(x) = e , c > 0 , (a, b] C (0, -) and f(x) = x , M = positive

integer, [a, b) C (0, )

The problem of finding the best partial basis computationally, for

situations where theorems of the above type are inapplicable, was stucied

in (1). An algorithm was presented, generalizing an algorithm of Hocking

and Leslie [12], and a compr'ter program was written and tested on some

numerical examples. Also a theorem givin continuous dependence of a best

approximation on the basis funct-ons was .iven in [1]. This algorithm

lI
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was extended to complex-valued basis functions and used to design finite

impulse response digital filters and to estimate frequencies of sinusoids

in the presence of noisel cf. [4].

III. Least Squares Approximation with Restricted Range. This problem can

be formulated as follow:

minimize [f(x) - h(x)] 2dx
h cH aa

subject to L(x) < p(x) < u(x) for all x in a set I * This includes

the problem of positive approximation (where p(x) > 0 is required) which

has been studied by several investigators ([131, [14]).

The following characterization theorem has been obtained (under certain

hypotheses on H, f, L, u, and I which will not be specified here):

The approxi ation h* in H is a solution of the least squares restricted

range problem if and only if Z < h* < u on I and there exists points

xl,e@,xk in I and constants O1,-FO, ak such that:

(i) For i = l,--°,k, either h*(x i) = t(x )

or h*(x.) = u(x.)

(ii) sign a i = +1 if h*(xi) = u(xi)

-l if h*(xi) = 9(x)

(iii) (f-h*)hj = ai hj (ti) j i,*, n

a

(Here hl.eve,h n is a basis for the set of approximations)
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Computational algorithms of the Remes type have been formulated, convergence

proofs obtained, and numerical examples solved in [6], (8).

IV. Mixed Norm Approximation. In designing beam patterns for antenna

arrays and in designing the frequency response of a digital filter, one

may wish to use different criteria of approximation for different intervals.

For example, one might use a uniform norm

max jf(x) - p(x) I
x in I1

in the passband interval I and a weighted least squares norm

I 2 W(x) If(x)-p(x)1 Idx]l/2

in the stopband interval 12 . Two possible approaches are:

(i) minimize ( w(x) If(x)-p(x) 2

p 2

subject to - £ < f(x)-p(x) < £ for all x in I1

and

(ii) minimize { A max If(x)-p(x)1 2

x in I1

+ (1-A) J w(x) f(x)-p(x)I dx)

2

where 0 < A < 1 . The "mixed norm" problem (ii) can be

converted to a quadratic programming problem, and solved; cf [2]. It

is shown in [2) that, or f(x) of a certain type, (i) and (ii) are

K
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equivalent in the following sense: If pA(x) solves the problem (ii) for

some X) 0 < A < 1 , then there exists an E > 0 such that pA(x) solves

problem (i). Conversely, if p (x) solves (i) for some E , there

exists X , 0 < X < 1 such that pW(x) solves (ii). It is also shown

that mixed norm approximation is related to vectorial approximation, de-

veloped by A. Bacopoulos and others [15]. In [6] the "mixed norm" in (ii)

above is generalized to Arjlf-plIlr + (,_,)r 11f-p.12r where 1 < r and

II I I' I 112 are two specified norms. Again an equivalence theorem

is obtained. The "r =" case, formulated as max {AIIf-P111, (1-))If-P1121 ,
is studied carefully in [3] for h f-ph1l a discrete uniform norm and

Ilf-pI12 a least square norm: a computational algorithm is formulated,

proved to converge, and tested numerically. This algorithm is an analogue

I of an algorithm of C. L. Lawson, cf. [161.

V. Other Results. In this section we discuss other work partially supported

by the Grant, namely (10] and (5]. Let - < a < 0 < b < , and f a

real function, continuous on [a, h] but not a polynomial there. Given

integers k, n

denote

(i) E n(f) =min -iax Jf(x)-p n(x)
a<x<b

where the minimum is taken over polynowials of degree at most n . Let

E k (f) denote the right hand side of (1) where the minimum is taken over all
n

k
polynomials of degree at most n whose coefficient of x is 0 . It

follows from work in [17], [181 that if f(k) exists and satisfies a

Lipschitz condition of order a (0<a<l) throughout [a, b] and ifIlI
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f (k) (0)p 0 then there exists a positive constant A such that

E ()(f)n

(2) n> A n a, n = Os ItooE n (f)k

In [101 a converse theorem has been obtained which essentially states

that if inequality (2) ho -Is, then f(k) exists and satisfies a Lipschitz

condition of order a on each closed interval [a , b I with

a < a' < b' < b . Hence a remarkable theorem is obtained identifying a

E k(f)

certain smoothness of f with the growth of n
En (f)

Note that this theorem could be considered a "partial basis" result of

type described in Section II.

In conclusion we mention briefly [5] where Muntz-type closure

theorems are obtained for sequences of the form

{w(t)t } on unbounded intervals.

k=l

all-



-8-

* IReferences

1. Levasseur, K. M. and Lewis, J. T., "Antenna Design as a Partial Basis)Problem", University of Rhode Island Mathematics Department Technical
Report No. 66, 1977.

2. Cooper, W. C., Levasseur, K. M., and Shisha, 0., "Design of Minimum
Noise Digital Filters Using a Mixed Norm", University of Rhode Island
Mathematics Department Technical Report No. 67, 1977.

3. Levasseur, K. M., "Computation of Best Mixed Norm Approximations", Univer-
sity of Rhode Island Mathematics Department Technical Report No. 72, 1978.

4. Khorrami, J. R., "Study of Digital Filter Design and Frequence Estimation
by Complex Subset Selection", M. S. Thesis, University of Rhode Island,
1979.

5. Zalik, R. A., "Weighted Polynomial Approximation on Unbounded Intervals",
Journal of Approximation Theory, 28 (1980), 113-119.

6. Levasseur, K. M., "Best Approximation with respect to Two Objectives",
Ph.D. Thesis, University of Rhode Island, 1980.

7. Shisha, 0., "Tchebycheff Systems and Best Partial Bases", to appear in
Pacific Journal of Mathematics.

8. Levasseur, K. M. and Lewis, J. T., "Least Squares Approximation with
Restricted Range", manuscript in preparation.

9. Lewis, J. T., Pinkus, A., and Shisha, 0., manuscript on the partial
basis problem, in preparation.

10. Hasson, M. an, Shisha, 0., Ai roximation by lacunary polynomials: a
converse theorem, manuscript in preparation.

11. Lorentz, G. G., "Approximation by Incomplete Polynomials (problems and
results)", in Pad' ani Rational Approximation - Theory and Applications,
edited by E. B. Saff and R. S. Varga, Academic Press, New York, 1977,
289-302.

12. Hocking, R. P., and Leslie, R. N., "Selection of the Best Subset in
Regression Analysis", Technometrics, 9 (1967), 531-540.

13. Deutsch, F., "Some ApplicationF of Functional Analysis to Approximation
Theory", Ph.D. Thesis, Brown Uiiv., 1965.

14. Mathews, J. W., "An Algorithm 'or Obtaining Best Approximations on Sets
of Positive Polynomials", SIAM J. Num. Anal., 9 (1972), 734-742.

'I



-9-

15. Bacopoulos, A., "Non-linear Chebyshev Approximation by Vector Norms",
J. Approximation Theory, 2 (1969), 79-84.

16. Rice, J. R., The Approximation of Functions, Vol. 2, Advanced Topics,

Addison-Wesley, Reading, Mass., 1969.

17. Hasson, M., "Derivatives of the Algebraic Polynomials of Best Approximation",
J. Approximation Theory, 28 (1980).

18. Hasson, M., "Comparison between the Degrees of Approximation by Lacunary
and Ordinary Algebraic Polynomials", J. Approximation Theory, 28 (1980).

i

II



DATE

FI.LMED

DTIC


